Research led by Hui-Yi Lin, PhD, Associate Professor of Biostatistics at LSU Health New Orleans School of Public Health, has developed another novel statistical method for evaluating gene-to-gene interactions associated with cancer and other complex diseases. The Additive-Additive 9 Interaction (AA9int) method is described in a paper published in Bioinformatics, available online here.
“This method can identify combinations of genetic variants for predicting cancer risk and prognosis,” notes Dr. Lin, who is also the paper’s lead author.
AA9int is based upon another method Lin developed, SNP Interaction Pattern Identifier (SIPI), to identify interactions between single nucleotide polymorphisms (SNPs). According to the National Institutes of Health, “Single nucleotide polymorphisms, frequently called SNPs (pronounced “snips”), are the most common type of genetic variation among people. Each SNP represents a difference in a single DNA building block, called a nucleotide. Most commonly, these variations are found in the DNA between genes. They can act as biological markers, helping scientists locate genes that are associated with disease. When SNPs occur within a gene or in a regulatory region near a gene, they may play a more direct role in disease by affecting the gene’s function.”
Although SNP-SNP or gene-gene interaction studies have been emerging, the statistical methods for evaluating SNP-SNP interactions are still in their infancy. The conventional approach to test SNP interactions is to use a hierarchical interaction model with two main effects plus their interaction with both SNPs as an additive inheritance mode. However, this approach tests just one specific type of interaction, which can lead to many false negative findings.
The research team also studied the impact of inheritance mode and model structure on detecting SNP-SNP interactions. SNP Interaction Pattern Identifier (SIPI) evaluates SNP interaction patterns by considering three major factors: model structure (hierarchical and non- hierarchical model), genetic inheritance mode (dominant, recessive and additive), and mode coding direction. AA9int considers non-hierarchical model structure and the additive mode. They found that non-hierarchical models play a more important role in SNP interaction detection than inheritance modes.
“These identified gene-gene or SNP-SNP interactions increase our understanding of the biological mechanisms of cancer development and may improve cancer diagnosis accuracy and reduce cancer-related deaths in the future." Lin concludes.
The research team included scientists from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) Consortium.
Computational facilities at LSU Health New Orleans School of Public Health were supported by high-performance computational resources provided by the Louisiana Optical Network Infrastructure (LONI).
The research was supported by a grant from the National Cancer Institute of the National Institutes of Health.